Towards next Generation Provenance Systems for E-science towards next Generation Provenance Systems for E-science

نویسندگان

  • Fakhri Alam Khan
  • Sardar Hussain
  • Ivan Janciak
چکیده

e-Science helps scientists to automate scientific discovery processes and experiments, and promote collaboration across organizational boundaries and disciplines. These experiments involve data discovery, knowledge discovery, integration, linking, and analysis through different software tools and activities. Scientific workflow is one technique through which such activities and processes can be interlinked, automated, and ultimately shared amongst the collaborating scientists. Workflows are realized by the workflow enactment engine, which interprets the process definition and interacts with the workflow participants. Since workflows are typically executed on a shared and distributed infrastructure, the information on the workflow activities, data processed, and results generated (also known as provenance), needs to be recorded in order to be reproduced and reused. A range of solutions and techniques have been suggested for the provenance of data collection and analysis; however, these are predominantly workflow enactment engine and domain dependent. This paper includes taxonomy of existing provenance techniques and a novel solution named VePS (The Vienna e-Science Provenance System) for e-Science provenance collection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Next Generation Provenance Systems for e-Science

e-Science helps scientists to automate scientific discovery processes and experiments, and promote collaboration across organizational boundaries and disciplines. These experiments involve data discovery, knowledge discovery, integration, linking, and analysis through different software tools and activities. Scientific workflow is one technique through which such activities and processes can be...

متن کامل

Towards a Threat Model for Provenance in e-Science

Scientists increasingly rely on workflow management systems to perform large-scale computational scientific experiments. These systems often collect provenance information that is useful in the analysis and reproduction of such experiments. On the other hand, this provenance data may be exposed to security threats which can result, for instance, in compromising the analysis of these experiments...

متن کامل

Automatic Generation of Workflow Provenance

While workflow is playing an increasingly important role in eScience, current systems lack support for the collection of provenance data. We argue that workflow provenance data should be automatically generated by the enactment engine and managed over time by an underlying storage service. We briefly describe our layered model for workflow execution provenance, which allows navigation from the ...

متن کامل

Towards the Domain Agnostic Generation of Natural Language Explanations from Provenance Graphs for Casual Users

As more systems become PROV-enabled, there will be a corresponding increase in the need to communicate provenance data directly to users. Whilst there are a number of existing methods for doing this — formally, diagrammatically, and textually — there are currently no application-generic techniques for generating linguistic explanations of provenance. The principal reason for this is that a cert...

متن کامل

Intelligent Workflow Systems and Provenance-Aware Software

Workflows are increasingly used in science to manage complex computations and data processing at large scale. Intelligent workflow systems provide assistance in setting up parameters and data, validating workflows created by users, and automating the generation of workflows from high-level user guidance. These systems use semantic workflows that extend workflow representations with semantic con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016